Finding the roots of quadratic equation using factorization method

Quadratic equation

A expression in the form of ax2 + bx +c where a , b , c are real numbers and a\[\neq \]0  is called Quadratic equation.

For ex-         2x2 +5x+8

                    x2-8x+3

                   \[\sqrt{2}x^{2} -8x+9 \]

                  x2-9

                  7 x2  -  5x  and so on

but \[x^{2}-\frac{1}{x}+9 \]    is not a quadratic equation.

Solving Quadratic equation using  1. Quadratic formula 

                                                       2. Midddle term splitting

Method 1 is cumbersome but sometimes very useful when middle term spitting is pretty tough to do

Method 2 is quick and time saving technique.

\[x^{2}  -3 \sqrt{3} x -30 \]   can be written as 

\[ x^2 - 5 \sqrt[]{3} x + 2\sqrt[]{3} x -30 \]

\[ x(x-5\sqrt[]{3})+2\sqrt[]{3}(x-5\sqrt[]{3}) \] 

\[(x-5\sqrt[]{3})(x+2\sqrt[]{3}) =0 \]

\[ x=5\sqrt[]{3}   ,x= -2\sqrt[]{3} \] 

Posted on by