Sum of cubes of first n natural numbers

Sum of cubes of first n natural numbers is given by below formula

                     \[\sum_{1}^{n} n^{3}=(\frac{n(n+1)}{2})^{2} \]    

where n is natural number

This method can easily be employed to calculate the cubes of n natural numbers using the above formula

For example \[\sum_{1}^{5} n^{3}= 1^{3}+2^{3}+3^{3}+4^{3}+5^{3} \]

\[\sum_{1}^{5} n^{3}= 1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=[\frac{5*6}{2}]^{2}=225 \]

                     \[\sum_{1}^{10} n^{3}= 1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+......+10^{3}=[\frac{10*11}{2}]^{2}=3025 \]

                    \[\sum_{1}^{20} n^{3}= 1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+......+20^{3}=[\frac{20*21}{2}]^{2}=44100 \]

                  and so on.

               

Posted on by