Equations based on Laws of exponents

Exponent - \[(((x^{y})^{z})^{w})^{k} \]   is indices where x, ,y ,z,w,k all must be real numbers.

 Boundary condition- All of these numbers  should be taken in such a way that it should not result a complex no 

like  x= -1 and y=0.5 and z,w,k would be any other real value

 Steps to solve

It sshould be evaluated from innermost parenthesis onwards.

For example \[(2^{3})^{4}=4096 \]

                     \[((2)^{3})^{2}=64 \]

Exponent of the form \[a^{b^{c}} \]  should be evaluated from the outermost power and should be solved towards innermost numbers

                    \[2^{3^{2^{2}}}=2^{81} \neq 2^{12} \]

In this case first 22  which is 4, has been  evaluated then 34 which comes to 81  is evaluated then we get 281

Similarly  \[5^{2^{4}}=5^{16} \]  

               \[4^{2^{2^{2^{2}}}}=4^{65536} \]

 Law of exponent   

\[(ab)^{m}=a^{m}*b^{m} \]

For example 

\[(4*3)^{5}=4^{5}*3^{5}=12^{5} \]  

\[6^{3}*7^{3}=42^{3} \] 

Posted on by