Areas of similar triangles

Theorem:

               "The areas of similar triangles are proportional to the squares on the corresponding sides".

              Data: \[ \Delta ABC \approx \Delta DEF\]

                         \[\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\]

              To prove: \[\frac{Area of \Delta ABC}{Area of \Delta DEF}=\frac{BC^2}{EF^2}\]

                Construction: Draw \[AL\perp BC\] and \[DM\perp EF\]

              Proof:   

STATEMENT REASON
Compare \[ \Delta ALB \]and\[ \Delta DME\]
\[\angle ABL=\angle DEM\] (\[\because Data\])
\[\angle ALB=\angle DME={90}^{\circ}\] (\[\because Construction\])
\[\therefore \Delta ALB \approx \Delta DME\] (\[\because Equiangular\])
\[\Rightarrow \frac{AL}{DM}=\frac{AB}{DE}\] (\[\because AA criteria\])
but \[\frac{BC}{EF}=\frac{AB}{DE}\] (\[\because Data\])
 \[\frac{AL}{DM}=\frac{BC}{EF}\] (\[\because Transitive property\]

       Area of ABC=\[\frac{1}{2}\times BC\times AL\]

       Area of DEF=\[\frac{1}{2}\times EF\times DM\]

      \[\therefore \frac{Area of ABC}{Area of DEF}=\frac{\frac{1}{2}\times BC\times AL}{\frac{1}{2}\times EF\times DM}=\frac{BC\times AL}{EF\times DM}\]

       Now,\[\frac{ar( \Delta ABC)}{ar( \Delta DEF)}=\frac{BC\times AL}{EF\times DM}\]

                                              \[=\frac{BC}{EF}\times \frac{AL}{DM}\]

                                               \[=\frac{BC}{EF}\times \frac{BC}{EF}\]      [\[\because \frac{AL}{DM}=\frac{BC}{EF} \] is proved]

                                                \[\frac{BC^2}{EF^2} \]

                               \[\therefore \frac{ar( \Delta ABC)}{ar( \Delta ABC)}=\frac{BC^2}{EF^2} \]

                                From data, \[\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\]

                                  \[\therefore \frac{ar( \Delta ABC)}{ar( \Delta DEF)}=\frac{AB^2}{DE^2}=\frac{BC^2}{EF^2}=\frac{AC^2}{DF^2}\]

Posted on by