Theorem:
          If two triangles are equiangular, then their corresponding sides are proportional.
Data: In \[ \Delta ABC \] and \[ \Delta DEF\]
1) \[ B\hat{A} C= E\hat{D} F\]
2) \[A\hat{B} C=D\hat{E} F\]
3) \[A\hat{C} B=D\hat{F} E\]
To Prove: \[\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\]
Construction: Mark points G and H on AB and AC such that
1) AG = DE
2) AH = DF.
Join G and H.
Proof: 
	
		
			| STATEMENT | REASON | 
		
			| Compare \[ \Delta AGH\] and \[ \Delta DEF\] |  | 
		
			| AG = DE | \[(\because Construction)\] | 
		
			| \[\angle GAH=\angle EDF\] | \[(\because Data)\] | 
		
			| AH = DF | \[(\because Construction)\] | 
		
			| \[\therefore \Delta AGH\cong \Delta DEF\] | \[(\because SAS)\] | 
		
			| \[\therefore \angle AGH=\angle DEF\] | \[(\because CPCT)\] | 
		
			| But \[\angle ABC=\angle DEF\] | \[(\because Data)\] | 
		
			| \[\Rightarrow \angle AGH=\angle ABC\] | \[(\because Axiom-1)\] | 
		
			| \[\therefore GH\left | \right | BC\] | (\[\because \] If corrsponding angles are equal then lines are parallel.) | 
		
			| \[\therefore In \Delta ABC\] \[\frac{AB}{AG}=\frac{BC}{GH}=\frac{CA}{HA}\] | \[\because \] Third corollary to Thales Theorem | 
		
			| Hence \[\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\] | \[(\because \Delta AGH= \Delta DEF)\] |