AA Criteria

Theorem:

          If two triangles are equiangular, then their corresponding sides are proportional.

Data: In \[ \Delta ABC \] and \[ \Delta DEF\]

1) \[ B\hat{A} C= E\hat{D} F\]

2) \[A\hat{B} C=D\hat{E} F\]

3) \[A\hat{C} B=D\hat{F} E\]

To Prove: \[\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\]

Construction: Mark points G and H on AB and AC such that

1) AG = DE

2) AH = DF.

Join G and H.

Proof: 

STATEMENT REASON
Compare \[ \Delta AGH\] and \[ \Delta DEF\]
AG = DE \[(\because Construction)\]
\[\angle GAH=\angle EDF\] \[(\because Data)\]
AH = DF \[(\because Construction)\]
\[\therefore \Delta AGH\cong \Delta DEF\] \[(\because SAS)\]
\[\therefore \angle AGH=\angle DEF\] \[(\because CPCT)\]
But \[\angle ABC=\angle DEF\] \[(\because Data)\]
\[\Rightarrow \angle AGH=\angle ABC\] \[(\because Axiom-1)\]
\[\therefore GH\left | \right | BC\] (\[\because \] If corrsponding angles are equal then lines are parallel.)
\[\therefore In \Delta ABC\] \[\frac{AB}{AG}=\frac{BC}{GH}=\frac{CA}{HA}\] \[\because \] Third corollary to Thales Theorem
Hence \[\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\] \[(\because \Delta AGH= \Delta DEF)\]

Posted on by