Tales Theorem or Basic Proportionality Theorem (B.P.T.)

If a straight line is drawn parallel to one side of a triangle, then it divides the other two sides proportionally.

Data: In \[ \Delta ABC\]

            DE II  BC

To prove: \[\frac{AD}{DB}=\frac{AE}{EC}\]

Construction: 1. Join DC and BE.     2. Draw EL ꓕ AB and DN ꓕ AC.

Proof:                 

STATEMENT REASON
\[\frac{Area of \Delta ADE}{Area of \Delta BDE}=\frac{\frac{1}{2}\times AD\times EL}{\frac{1}{2}\times DB\times EL}\] \[(\because A=\frac{1}{2}\times b\times h)\]
\[\therefore \frac{ \Delta ADE}{ \Delta BDE}=\frac{AD}{DB}\]
\[\frac{ \Delta ADE}{ \Delta CDE}=\frac{\frac{1}{2}\times AD\times DN}{\frac{1}{2}\times EC\times DN}\] \[(\because A=\frac{1}{2}\times b\times h)\]
\[\therefore \frac{ \Delta ADE}{ \Delta CDE}=\frac{AE}{EC}\]
\[\Rightarrow \frac{ AD}{ DB}=\frac{AE}{CE}\] [\[\because \Delta BDE= \Delta CDE \] and Axiom-1]

Axiom1:  For two triangles, if two pairs of sides have the same ratio then those two triangles are similar.

Posted on by