Sum of tan inverse of x and tan inverse of y

case 1 

\[tan^{-1}(x)+tan^{-1}(y)=tan^{-1}(\frac{x+y}{1-xy})\]  

boundary condition -    xy<1

example for x= 0.5 and y =1/3 =0.333333  we get 45 degrees

case 2  when x>0 y>0 and xy>1

\[tan^{-1}(x)+tan^{-1}(y)=180^{0}+tan^{-1}(\frac{x+y}{1-xy\frac{}{}})\]

example x=2 and y =3  we get 135 degrees

case 3 x<0 y < 0 and xy>1

\[tan^{-1}(x)+tan^{-1}(y)=-180^{0}+tan^{-1}(\frac{x+y}{1-xy\frac{}{}})\]

if x=-2 , y=-3 and xy > 1 we get -135 degrees

Posted on by