Pythagoras Theorem

Theorem: In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Data: In \[ \Delta ABC, \angle ABC= {90}^{\circ}\]

To prove: \[AB^2+BC^2= CA^2\]

Construction: Draw \[BD \perp AC.\]

Proof: 

STATEMENT REASON
\[Compare \Delta ABC and \Delta ADB\]
\[\angle ABC= \angle ADB= {90}^{\circ}\] (\[\because \]Data and construction)
\[\angle BAD \] is common.
\[\therefore \Delta ABC\approx \Delta ADB\] (\[\because \] Equiangular triangles)
\[\Rightarrow \frac{AB}{AD}=\frac{AC}{AB}\] (\[\because \] AA similarity criteria)
\[\therefore AB^2=AC \times AD\].....(1)
\[Compare \Delta ABCand \Delta BDC.\]
\[\angle ABC=\angle BDC= {90}^{\circ}\] (\[\because \]Data and construction)
\[\angle ACB\] is common.
\[\therefore \Delta ABC \approx \Delta BDC\] (\[\because \] Equiangular triangles)
\[\Rightarrow \frac{BC}{DC}=\frac{AC}{BC}\] (\[\because \] AA similarity criteria)
\[BC^2=AC\times DC\]......2

By adding (1) and (2) we get,

\[AB^2+BC^2=(AC\times AD)+(AC\times DC)\]

\[AB^2+BC^2=AC(AD+DC)\]

\[AB^2+BC^2=AC\times AC=AC^2\]    \[(\because AD+DC=AC)\]

\[\therefore AB^2+BC^2=AC^2\]

Posted on by