Area of equilateral triangle

In the equilateral \[ \Delta ABC\], let AB=BC=CA='a' units.

Draw \[AD \perp BC\]. LET AD= 'h' units.

\[\therefore BD=DC\]   (\[\because \] RHS theorem)

\[\therefore BD=DC=\frac{a}{2}\]

Now there are two right angled triangles, \[ \Delta ADB and \Delta ADC.\]

In \[ \Delta ADB , \angle ADB= {90}^{\circ}\]   (\[\because AD \perp BC\])

\[AB^2=AD^2+BD^2\]   (\[\because \]Pythagoras theorem)

\[\therefore a^2=h^2+\left ( \frac{a}{2} \right ) ^2\]

\[a^2=h^2+\frac{a}{4} ^2\]

\[\frac{a^2}{1}-\frac{a^2}{4}=h^2\]

\[\frac{4a^2-a^2}{4}=h^2\]

\[\frac{3a^2}{4}=h^2\]

Take square root on either side.

\[\sqrt{\frac{3a^2}{4}}=\sqrt{h^2} \]

\[\frac{\sqrt{3}\times a}{2}=h \]

\[\therefore h=\frac{a\sqrt{3}}{2}\]

\[\therefore \] Height of an equilateral triangle of side 'a' units, \[h=\frac{a\sqrt{3}}{2} \]

Posted on by