Numerical problems based on Pythagoras theorem

1. The sides of a right angled triangle consisting the right angle are 5cm and 12cm, find its hypotenus.

\[AC^2=AB^2+BC^2\]

\[=5^2+12^2\]

\[=25+144\]

\[=169\]

\[AC=\sqrt{169}=13 cm\].

2. Find the length of the diagonal of a square of side 12cm.

In \[ \Delta ABC,\]  \[A \hat{B} C= {90}^{\circ}\]

\[AC^2=AB^2+BC^2\]

\[=12^2+12^2\]

\[=144+144=2\sqrt{144}\]

\[AC=\sqrt{2\times 144}=12\sqrt{2}cm.\]

3. The length of diagonal of a rectanglar playground is 125m and the length of one side is 75m. Find the length of the other side.

In \[ \Delta ABC,\]  \[BC =75m,\]  \[AC =125m,\]  \[AB=?\]

In \[ \Delta ABC,\]  \[A \hat{B} C= {90}^{\circ}\] 

\[AB^2+BC^2=AC^2\]

\[AB^2=AC^2-BC^2\]

\[=125^2-75^2\]

\[AB^2=(125+75)(125-75)\]       \[a^2-b^2=(a+b)(a-b)\]

\[=200\times 50\]

\[=10,000\]

\[AB=\sqrt{10,000}=100m\]

Posted on by