Application of trapezoidal rule to evaluate integration

Trapezoidal rule for three intervals

\[\frac{h}{2}[(y_0+y_2)+2y_1]\]

Example \[\int_{1}^{3}\frac{1}{x} dx \] . Evaluate using trapezoidal rule

x 1 2 3
y=f(x) 1 0.5 0.33
\[y_n\] \[y_0\] \[y_1\] \[y_2\]

I= 0.5(1+0.33+2*0.5)=1.165

Trapezoidal rule using 5 intervals 

\[\frac{h}{2}[(y_0+y_5)+2(y_1+y_2+y_3+y_4)\]

Example \[\int_{1}^{3}lnx dx \] . Evaluate using trapezoidal rule with 5 intervals.

x 2.5 2.8 3.1 3.4 3.7 4
y=f(x) 0.1963 1.0296 1.1314 1.2237 1.3083` 1.3863
\[y_n\] \[y_0\] \[y_1\] \[y_2\] \[y_3\] \[y_4\] \[y_5\]

I=0.15[(0.9163+1.3863)+2(1.0296+1.1314+1.2237+1.3083)]=1.7533

Note \[y_0\]=a \[y_1\]=b  \[y_2\]=c \[y_3\]=d \[y_4\]=g  \[y_5\]=f in the equation

Posted on by