Application of direction ratios to find angle between two straight lines

Assumption of variable

a=\[a_1\] b =\[b_1\]  c =\[c_1\]

d=\[a_2\] k=\[b_2\]  f=\[c_2\]

If \[a_1\] x+\[b_1\]y+\[c_1\]z =\[d_1\] and and \[a_2\] x+\[b_2\]y+\[c_1\]z =\[d_2\]  are straight lines then \[a_1\] \[b_1\]  \[c_1\] and \[a_2\] \[b_2\]  \[c_2\] are called direction rations of the lines.

Acute angle between lines is given by cosx= \[ \frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{(a_1^2+b_1^2+c_1^2)(a_2^2+b_2^2+c_2^2)}}\]

Example- Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.

solution

\[a_1\]= 4 \[b_1\]=-3 \[c_1\]=5

\[a_2\]=3 \[b_2\]=4 \[c_2\]=5

cosx= \[ \frac{4(3)+(-3)4+55}{\sqrt{(4^2+(-3)^2+5^2)(3^2+4^2+5^2)}}\]

cosx=\[\frac{1}{2}\] hence x= 60 degrees or x= \[\frac{\Pi }{3}\]

Posted on by