solving quadratic equations using formula with imaginary term

Factorization  using formula is explained in previous example (case 1 :when \[b^2-4\times a\times c\] is positive)

case 2: when \[b^2-4\times a\times c\] is  negative 

example:

\[x^2+4x+5=0\]

formula is given by

x=\[\frac{-b+/-\sqrt{b^2-4\times a\times c}}{2\times a}\]

given: a=1,b=4, c=5

substituting in formula 

x =\[\frac{-4+/-\sqrt{4^2-4\times 1\times 5}}{2\times 1}\]

x= \[\frac{-4+/-\sqrt{16-20}}{2}\]

x= \[\frac{-4+/-\sqrt{-4}}{2}\]

x=\[\frac{-4+/-\sqrt{4\times -1}}{2}\]

but \[\sqrt{-1}\] = i (imaginary term)

x=\[\frac{-4+/-i\sqrt{4}}{2}\]

x=\[\frac{-4+/-2i}{2}\]

we shall find 2 values of x

when sign is +

x=\[\frac{-4+2i}{2}\]

x= \[-2+i\](taking 2 common in numerator and cancelling with denominator)

when sign is -

x=\[\frac{-4-2i}{2}\]

x=\[-2-i\] (taking 2 common in numerator  and cancelling with denominator)

\[\therefore \] x= -2+i , -2-i

Posted on by