Sum of the 8th power of n consecutive natural number

Sum of the 8th power of first  n natural number is given by the formula

\[ \sum_{n=1}^{n}n^8=1^8+2^8+3^8+..............+n^8\]

Example

\[ \sum_{n=1}^{2}n^8=1^8+2^8=257\]

\[ \sum_{n=1}^{3}n^8=1^8+2^8+3^8=6818\]

\[ \sum_{n=1}^{4}n^8=1^8+2^8+3^8+4^8=72354\]

\[ \sum_{n=1}^{5}n^8=1^8+2^8+3^8+4^8+5^8=462979\]

 

Posted on by