Sum of the cubes of the n terms of infinite GP

Sum of the cubes of the terms which are in infinite geometric progression is given by \[\frac{a^3}{1-r^3}\]

proof

let us consider a infinite geometric series \[a , ar ,ar^2,ar^3,.............\infty \]

sum of the cubes can be written as \[a^3+a^3r^3+a^3r^6+.....\infty \]

taking  \[a^3 \] common it can written as \[a^3 (1+r^3+r^6+....................+\infty )\]

which can further be written as as sum of infinite GP with first term =1

                                                                                    and common ratio=r^3

hence the sum =\[a^3 (\frac{1}{1-r^3})\]

                       =\[(\frac{a^3}{1-r^3})\]

Example - Find the cubes of the series \[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+......\infty \]

solution 

sum of the cubes of the term in infinite geometric progression can be given by \[\frac{a^3}{1-r^3}\]

here a=1 and r=\[\frac{1}{2}\]

 hence sum=\[\frac{1^3}{1-(1/2)^3}\]

                  =\[\frac{8}{7}\]

Posted on by