Formula to calculate nth derivative of ax plus b power n

here F(x)= \[(ax+b)^n\]

\[D^n(ax+b)^n=n!a^n\]

This can be proved by taking general case where F(x)= \[(ax+b)^m\]

first derivative can be written as  \[\frac{\mathrm{d}{y } }{\mathrm{d} x} \]= \[y_1=ma(ax+b)^{m-1}\]

2nd derivative is given by            \[y_2=m(m-1)a^2(ax+b)^{m-2}\]

3rd derivative can be given as      \[y_3=m(m-1)(m-2)(a^3)(ax+b)^{m-3}\]

....................................................................................................................

......................................................................................................................

nth derivative is given as       \[y_n=m(m-1)(m-2)..........(m-n+1)(a^n)(ax+b)^{m-n}\]..................(1)

This formula is true for all m

following are the some particular cases 

Case (1)  if m=n (positive)

then  then equation 1 can be simplified as 

\[D^n(ax+b)^n= n(n-1)(n-2).................1*a^n(ax+b)^{n-n}\]

                      =\[n!a^n\]

Posted on by