Formula to evaluate nth derivative of a^x

let's consider F(x)= \[a^x\]

on differentiating  both sides w.r.t x we get    \[\frac{\mathrm{d}{ } }{\mathrm{d} x} a^x\]= \[ a^x log_{e}(a)\]

On differentiating once again w.r.t x we get   Dif\[\frac{\mathrm{d^2}{ a^x} }{\mathrm{d} x^2} \]=\[ a^x (log_{e}(a))^2\]

.........................................................................................................................................

........................................................................................................................................

.........................................................................................................................................

Finally \[\frac{\mathrm{d^n}{ a^x} }{\mathrm{d} x^n} \]=\[a^x (log_{e}(a))^n\]

Problem. Find the value of  4th derivative of \[5^x\]  at x=2 ?

Solution:  \[\frac{\mathrm{d^4}{5^x } }{\mathrm{d} x^4} \]=\[5^x (log_{e}(5))^4\]=167.74011

                                                                

Posted on by