Formula to calculate nth derivative a^(m*x)

let's consider F(x)= \[a^{mx}\]

on differentiating  both sides w.r.t x we get    \[\frac{\mathrm{d}{ } }{\mathrm{d} x} a^{mx}\]= \[ a^{mx}m log_{e}(a)\]

On differentiating once again w.r.t x we get   Dif\[\frac{\mathrm{d^2}{ a^{mx}} }{\mathrm{d} x^2} \]=\[ a^{mx}m^2 (log_{e}(a))^2\]

.........................................................................................................................................

........................................................................................................................................

.........................................................................................................................................

Finally \[\frac{\mathrm{d^n}{ a^{mx}} }{\mathrm{d} x^n} \]=\[a^{mx}m^n (log_{e}(a))^n\]

Problem. Find the value of  4th derivative of \[3^{2x}\]  at x=0.5 ?

Solution:  \[\frac{\mathrm{d^4}{( 3^{2x})} }{\mathrm{d} x^4} \]=\[(3^{0.5*2})(2^4) (log_{e}(3))^4\]  =69.92

                                                                 

Posted on by