Formula to calculate nth derivative of sin(ax+b)

let y=\[sin(ax+b)\]

\[y_1=acos(ax+b)=asin(ax+b+ \frac{\Pi }{2})\]

\[y_2=a^2cos(ax+b+ \frac{\Pi }{2})=a^2sin(ax+b+\frac{2\Pi }{2})\]

..........................................................

..........................................................

\[y_n=a^nsin(ax+b+\frac{n\Pi }{2})\]

Boundary condition:  n must be integer

problem1.Find the 3rd derivative of \[sin2x cos2x\] at x=0

solution

sin2x cos2x = \[\frac{2sin2xcos2x}{2}= \frac{sin4x}{2}\]

here n=3 a=4 b=0 x=0

\[y_3=4^3sin(4x+0+\frac{3\Pi }{2})\]=-64

Posted on by