solving linear Regression problem , prediction algorithm with calculators to compute slope

The Linear Regression Equation

Linear regression is a way to model the relationship between two variables. You might also recognize the equation as the slope formula. The equation has the form Y=a+bX, where Y is the dependent variable (that’s the variable that goes on the Y axis), X is the independent variable (i.e. it is plotted on the X axis), b is the slope of the line and a is the y-intercept.

\[a=\frac{\left ( \sum y \right ) \left ( \sum x^2 \right )-\left ( \sum x \right )\left ( \sum xy \right )}{n\left ( \sum x^2 \right )-\left ( \sum x \right )^2}\]

\[b=\frac{n\left ( \sum xy \right )-\left ( \sum x \right )\left ( \sum y \right )}{n\left ( \sum x^2 \right )-\left ( \sum x \right )^2}\]

How to Find a Linear Regression Equation: Steps

step1ake a chart of your data, filling in the columns in the same way as you would fill in the chart if you were finding the Pearson’s Correlation Coefficient.

SUBJECT AGE X GLUCOSE LEVEL Y XY X2 Y2
1 43 99 4257 1849 9801
2 21 65 1365 441 4225
3 25 79 1975 625 6241
4 42 75 3150 1764 5625
5 57 87 4959 3249 7569
6 59 81 4779 3481 6561
Σ 247 486 20485 11409 40022

step2:Use the following equations to find a and b.

\[a=\frac{\left ( \sum y \right ) \left ( \sum x^2 \right )-\left ( \sum x \right )\left ( \sum xy \right )}{n\left ( \sum x^2 \right )-\left ( \sum x \right )^2}\]

\[b=\frac{n\left ( \sum xy \right )-\left ( \sum x \right )\left ( \sum y \right )}{n\left ( \sum x^2 \right )-\left ( \sum x \right )^2}\]

a=65.1416

b = .385225

Find a:

        ((486 × 11,409) – ((247 × 20,485)) / 6 (11,409) – 2472)

        484979 / 7445

        =65.14

Find b:

        (6(20,485) – (247 × 486)) / (6 (11409) – 2472)

        (122,910 – 120,042) / 68,454 – 2472

        2,868 / 7,445

        = .385225

step3: Insert the values into the equation.

           y’ = a + bx
           y’ = 65.14 + .385225x

For our equation block we asume:

\[p= \sum x ,\;\; q= \sum y , \;\;r=\sum xy, \;\; w= \sum x^2\]

Posted on by