Representation of a matrix as symmetric and skew symmetric

Any square matrix can be written as a sum of matrix and its transpose 

A=\[\frac{A+A'}{2}+\frac{A-A'}{2}\] where A is given matrix and \[A'\] is transpose of the given matrix.

\[A+A'\] is symmetric matrix and \[A-A'\] is a skew symmetric matrix.

Example- Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

  \[\begin{bmatrix}3&5\\1&-1\end{bmatrix}\]

solution-

\[\frac { \begin{bmatrix}3&5\\1&-1\end{bmatrix}+\begin{bmatrix}3&1\\5&-1\end{bmatrix}}{2}=\begin{bmatrix}3&3\\3&-1\end{bmatrix}\]..............(1)

which is a symmetric matrix

\[\frac {\begin{bmatrix}3&5\\1&-1\end{bmatrix}-\begin{bmatrix}3&1\\5&-1\end{bmatrix}}{2}\]=\[\begin{bmatrix}0&2\\-2&0\end{bmatrix}\].................(2)

which is skew symmetric matrix

adding equation 1 and 2 we get matrix A as\[\begin{bmatrix}3&5\\1&-1\end{bmatrix}\]

Posted on by