Multiolication of Two square Matrix
Let Matrix A is \[\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}\]
and Matrix B =\[\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}\]
The product AB is given by \[\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}\]\[\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}\]=\[\begin{bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}\]
Example If A=\[\begin{bmatrix}1&-2\\3&4\end{bmatrix}\] and B=\[\begin{bmatrix}0&1\\3&5\end{bmatrix}\]
Then AB is given as \[\begin{bmatrix}-6&-9\\12&23\end{bmatrix}\]
Note - For multiplication of Matrix AB.The no of columns of first matrix A must be equal to no of rows of matrix B.