Multiplication of complex numbers

Multiplication of two complex numbers

let \[z_1\]=\[a+ib\] and and \[z_2=c+id\] be two complex number then multiplication of two  complex numbers is given by 

\[z_2z_1=a(c+id)+ib(c+id)=ac-bd+i(ad+bc)\]

where i is a complex number with value \[ \sqrt{-1}\]

Example 1

Let let \[z_1\]=\[2+i3\]  and \[z_2=3+i5\]

then \[z_2z_1=a(c+id)+ib(c+id)=ac-bd+i(ad+bc)\]=6-15+i(9+10)=-10+19i

Example 2

  Let let \[z_1\]=\[1+i2\]  and \[z_2=1-2i\]

then then \[z_2z_1=1+4=5

Note (a+ib)(a-ib)=\[a^2+b^2\]

For ex- (5+i)(5-i)=26

             (9-2i)(9+2i)=81+4=85

Posted on by