let z=\[a+ib\] then its conjugate is given by z'= \[ a-ib\]
zz' = \[|z|^2\] where \[|z|\] is modulus of complex number z
zz'=\[a^2+b^2\]
Example z=2-i3 then zz'=\[2^2+3^2=13\]
z=\[ \frac{1}{\sqrt{2}}+i\frac{\sqrt{3}}{2}\] then zz'=\[ (\frac{1}{\sqrt{2}})^2+i(\frac{\sqrt{3}}{2})^2=\frac{5}{4}\]