Formula to evaluate of circular determinants

\[\begin{vmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2\end{vmatrix}=(a-b)(b-c)(c-a)\]

proof 

\[\begin{vmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2\end{vmatrix}\]

applying column transformation \[ c_2-c_1\] and \[ c_3-c_2\]

 we get \[ \begin{vmatrix}1&0&0\\a&b-a&c-b\\a^2&b^2-a^2&c^2-b^2\end{vmatrix}\]

     =\[ \begin{vmatrix}1&0&0\\a&b-a&c-b\\a^2&(b-a)(b+a)&(c-b)(c+b)\end{vmatrix}\]

Taking \[ (b-a)\] common from \[c_2\] and \[c-b\] from \[c_3\]  determinant reduces to 

       \[(b-a)(c-b)\begin{vmatrix}1&0&0\\a&1&1\\a^2&b+a&b+c\end{vmatrix}\]

Expanding the determinant through row 1 gives \[ (a-b)(b-c)(c-a)\]

Posted on by