Properties of determinants for product of two determinants

For any two matrices A and B \[|AB|=|A||B|\]

This means determinants of products of two matrix is equal to product of determinat of individual matrix.

let A=\[ \begin{bmatrix}2&1\\5&3\end{bmatrix}\] and B=\[ \begin{bmatrix}0&1\\2&3\end{bmatrix}\]

then \[ det(AB)=|A||B|\]=-2

\[ |A|=\]\[ \begin{vmatrix}2&1\\5&3\end{vmatrix}\]=1

\[ |B|=\]\[ \begin{vmatrix}0&1\\2&3\end{vmatrix}\]=-2

Posted on by