Equations based on algebraic operation of matrices

Square of a determinant of matrix  A=\[\begin{vmatrix}a&b\\c&d\end{vmatrix}\]

                                                           =\[ (ad-bc)^2\]

Multiplication of determinant by a scalar- If a determinant is multiplied by a scalar then it is important to note that  any one row or coulumn of the determinant is multiplied by the scalar not all the rows or columns unlike the multiplicatio by scalar to a given matrix.

Example If determinant A= \[ \begin{vmatrix}2&3&1\\1&2&5\\1&2&1\end{vmatrix}\]

                          then 5A=\[ \begin{vmatrix}10&15&5\\1&2&5\\1&2&1\end{vmatrix}\] multiplication of scalar to first row

                              or 5A =\[ \begin{vmatrix}2&3&1\\5&10&25\\1&2&1\end{vmatrix}\] multiplication of scalar to 2nd row

                              or 5A  =\[ \begin{vmatrix}2&3&1\\1&12&5\\5&10&5\end{vmatrix}\]multiplication of scalar to 3rd  row

It is to note that all the three cases will give same value of determinant.If all these three operation is applied on three columns then also we get same value of determinant.

Determinant of Identity matrix

Determinant of identity matrix is always 1

 Multiplication of Identity matix by a scalar

If A is Identity matrix then determinant of 5A= |5A|=5

If A is Identity matrix then determinant of 10A= |10A|=10

Posted on by