Properties of eigen values and its application in evaluating determinant

For a given matrix A =\[\begin{bmatrix}a&b&c\\d&e&f\\p&q&r\end{bmatrix}\]

1. If eigen values of A are x ,y , z then the determiant of the matrix A is product of eigen values.

2. If eigen values of A are x ,y , z trace of the matrix is sum of eigen values=x+y+z

3. If eigen values of A are x ,y , z Eigen values of \[ A^{-1}\] are reciprocal of \[ \frac{1}{x}\],\[ \frac{1}{y}\],\[ \frac{1}{z}\].

4. If eigen values of A are x ,y , z then eigen values of KA are \[kx,ky,kz\]

5. Eigen values of A are same as  eigen values of \[A^T\]

6. If eigen values of A are x ,y , z then eigen values of adjoint of A are \[ \frac{|A|}{X}\],\[ \frac{|A|}{Y}\]\[ \frac{|A|}{Z}\]

Posted on by