Relation between trace and eigen values of the matrix

Important properties of eigen values

1.Trace of matrix =sum of the eigen values.

2.Value of the determinant of a given matrix = product of eigen values.

3. Determinant of matrix \[A\]=\[A^t\]

4. For a lower and upper triangular matrix ,eigen values are diagonal elements of the upper and lower triangular matrix.

Example

\[ \begin{bmatrix}a&b&c\\0&f&c\\0&0&r\end{bmatrix}\]

trace of the matrix=a+f+r

eigen values of the matrix are a,f,r

Posted on by